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CHAPTER 1 

LOGICAL SYSTEMS AND SEMANTICS 

This chapter discusses the notions of a logical system, a semantics for 
a logical system, and the notion of what is a classical connective in a 

logical system. Examples are given, to prepare the background for the 
introduction of the Heyting systems in the next chapter. 

1. SCOTT AND T ARSKI SYSTEMS 

DEFINITION 1. Let L be a language, and let cp, t/J denote finite, 
possibly empty sets of wffs. Let 0 denote the empty set. A binary 

relation I~ on sets cp, t/J is called Scott consequence relation iff the 
following conditions hold: 

(a) cp I~ cp, for cp;;e 0 

(b) if cp I~ t/J then cp U cp' I~ t/J U t/J' for any cp', t/J'. 

(c) (Cut rule): if cp, A I~ t/J and cp I~ t/J, A then cp I~ t/J 

DEFINITION 2. We write cp, A I~ t/J, B instead of cp U {A} I~ t/J U {B}. 

Similarly, we use cp, cp'l~ t/J, t/J' and cp, AI. ... , An I~ t/J, BI. ... , Bb 

instead of cp U cp' I~ t/J U t/J' and cp U {AI. ... , An} I~ t/J U {BI. ... , Bd 

respectively. 

DEFINITION 3. (a) A (Scott) consequence relation is said to be 

consistent iff 01H- 0. 
(b) A Scott consequence relation I~ is said to be a Scott system 

(S.S) iff I~ is closed under substitution. 

DEFINITION 4. Let A, 0 be sets of wffs, and let I~ be a Scott 

consequence relation. We write A I~ @ iff for some cp ~ A, '" c @, 

cp I~ t/J. 

Exercise 5. Let A, 0 be sets of wffs such that A Iff 0. Define a relation 

I~* by cp I~* t/J iff A, cp I~ 0, t/J. Show I~* is a Scott consequence 
relation. 

LEMMA 6. For any Scott consequence relation I~, if cp, Ai I~ t/J for 

1 ~ i ~ nand cp I~ t/J, AI, ... , An then cp I~ t/J. 

6 
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Proof. By induction on n. For n = 1 this is the cut rule. For 

n = k + 1, notice that cp, A j Ir- 1/1, A k+ I for 1 ~ i ~ k and cp If- 1/1, A k+ I, 

AI> ... , Ak and so by the induction hypothesis cp If- 1/1, A k+ l • Now since cp, 

Ak+ I If- 1/1 we conclude cp If- 1/1. 

DEFINITION 7. A Tarski consequence relation (for L) is a binary 

relation containing pairs of the form (cp, 1/1) (written cp ~ 1/1) with ;j; = 1, 
satisfying the following properties. (We use the conventions of 

Definition 2 for ~ as well.) 

(a) 

(b) 

(c) 

A~A 

if cp ~ 1/1 then cp, cp I ~ 1/1 

if cp, C ~ 1/1 and cp ~ C then cp ~ 1/1 (cut rule) 

DEFINITION 8. (a) A Tarski consequence relation ~ is called a 

Tarski system (T.S) iff ~ is closed under substitution. 

(b) ~ is said to be consistent iff for some cp, A, cp ~ A. 

Exercise 9. Let If- be a Scott consequence relation. For ;j; = 1 let 

cp ~ 1/1 iff (def) cp If- 1/1; show that ~ is a Tarski consequence relation. 

LEMMA 10. If cp ~ Ai, 1 ~ i ~ nand cp, At. . .. ,An ~ 1/1 then cp ~ 1/1. 

Proof. Let cp' ~ {At, ... ,An} and let $' = n - k. We show by in-
duction on k that cp U cp' ~ 1/1. The lemma will follow for the case 

n = k. 
Case k = 1: Let {At, . .. ,An} = cp' U {A}. A~ cp'. Then cp U cp' ~ A 

and cp, cp I, A ~ 1/1 and therefore by the cut rule, cp, cp I ~ 1/1. 

Case k: Let cp" = cp' U {A}, $" = n - k, with AE cp', cp" ~ 

{AI, ... , An}. 

By the induction hypothesis cp, cp' r t/I but also cp, cp' r A and therefore 

by the cut rule, cp, cp I ~ t/I. This proves Lemma 10. 

THEOREM 11. Let ~ be a Tarski consequence relation and let If-- be 

defined by cp If-- 1/1 iff (de/) for some B E 1/1, cp ~ B, then If-- is a Scott 

consequence relation. 

Proof. Clearly conditions (a) and (b) of Definition 1 are satisfied. 

We verify the cut rule. Assume that cp, C If-- 1/1 and cp If--1/1, c. By 

definition, for some B E t/I and A E t/I U {C} we have that cp, C ~ B 
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and cp r A. If A E '" we are finished. If AE "', then A = C, and thus 
cp r C, and cp, C r B and so cp r B and again we are finished. 

DEFINITION 12. Let r be a Tarski consequence relation and let II-
be a Scott consequence relation (for the same language L). II- and r 
are said to agree iff for all cp, "', ;j; = 1, cp r '" iff cp II- "'. 

THEOREM 13 (Scott). Let r be a Tarski consequence relation, 

then there exist two Scott consequence relations II-~ and II-~ that 

agree with r and such that for any II- that agrees with r we have 

II-~ ~ II- ~ II-~· 

Proof. (a) For II-~ take the Scott consequence relation defined in 

Theorem 11. Assume that II- is any Scott consequence relation that 

agrees with r. Then if cp II-~ '" then for some A E "', cp r A and 

therefore cp II- A and hence cp II- "'. 
(b) We define II-~. 
Let cp II-~ iff for some finite set a, property (*) below holds, Where: 

(*) For any partition (aI, a2) of a (Le. al U a2 = a, 
al n a2 = 0) there exists a Scott consequence relation II- that 

agrees with r such that cp, al II- "', a2. 

First we show that II-~ is a consequence relation 
(a) Clearly if cp"=l 0 then cp II-~ cp take a = 0 
(b) If cp II-~ '" let a be such that (*) holds, then for any cp', !/I', 

cp U cp' II-~ !/I U !/I' as the same a is adequate. 
(c) Assume cp, A II-~ !/I and cp II-~ !/I, A. Let a, a* resp. be the two 

sets having the properties (*) in the definition of II-~. Regard a' = 

au a* U {A}, we claim cp If-~!/I since a' has the property (*) required in 

the definition. 

We now have to show that II-~ agrees with ~. Assume cp II-~ A we 
want to show that cp ~ A. Since cp II-~ A, there exists a a with 
property (*). We show by induction on n, that for any e ~ a, e = n 

we have that cp U (a - e) I-- A. For n = 1, let BEe, be arbitrary. So 

cp u (a - {B}) Ih A, B for some Ih, that agrees with ~, because 

property (*) holds. Also for some 11-2 that agrees with r, cp, a 11-2 A. 

Since Ih, 11-2 agree with ~ we get that cp, a Ih A and so by cut, 
cpU(a-{B})lhA and so cpU(4.-{B})rA. 

Now a.§sume that for any e, e ~ m, cp U (a - e) ~ A, show this for 

any e, e = m + 1. Let such e be given then for any BEe, cp U 
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(~ - 8), B ~ A. Also by property (*), there exists a I~ that agrees with 

~ such that q;, ~ - 81~ 8, A. Now since I~ agrees with ~ we get by 

Lemma 6 that q;, ~ - 81~ A, and therefore q;, ~ - 8 ~ A. This com-

pletes the induction step. If we take 8 = ~, we get that q; ~ A, and thus 

we see that I~~ agrees with ~. 

To show that if I~ agrees with ~ then I~ C I~~, assume that q; I~ IjI, 
then for ~ empty we get property (*) and so q; I~~ IjI. 

Exercise 14. Let ~ be a Tarski consequence relation and let I~~ be the 
maximal Scott consequence relation agreeing with ~. Let con(~) be 

con(~) = {A /for some q; C~, q; ~ A}. Show that: 

q; I~~ '" iff n con(q;' U {B}) ~ con(q;') 
BE", 

for all q;' d q;. 

DEFINITION 15. (a) A Hilbert (or axiomatic) system H is a triple 

(Ho, HI, H 2) where Ho is a set of wffs called axioms, HI is a set of 

rules of the form A I> ••• , AnI B, _called provability rules and H2 is a set 

of rules of the form q;1"', with t/i = 1, called consequence rules. 

(b) Given a Hilbert system H, we define the relation ~ H A, on wff A 

as follows: ~H A iff there exists a finite sequence of wff B I. ... , Bk = A 

such that each Bi of the sequence is either a substitution instance of a 

member of Ho or for some wffs AI. . .. ,An, appearing earlier than Bi in 

the sequence, we have that AI. . .. ,AniBi is a rule of HI. 

_ (c) Given a Hilbert system H we define the notion q; ~H "', for 

;r, = 1 as follows: q; ~H '" iff there exists a sequence of wff BI> ... , Bn 

such that (i) and (ii) below hold: 

(i) For each i::::; neither (1) Bi E q; or (2) ~H Bi (~H of (b) above) or 

(3). For some AI. ... , Ak appearing earlier in the sequence 

{AI> ... ,Ad/{BJ is a substitution instance of a rule of H 2• 

(ii) Either (1) '" = {B} with BE q; or (2){BI> . .. ,Bn}/IjI is a substitution 

instance of a rule of H 2• 

Remark. We use the abbreviations of Definition 2 for Hilbert systems 

as well. 

THEOREM 16. Let H be a Hilbert sy~tem, then ~H IS a Tarski 
system. 
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Proof· Let us check the cut rule. Assume cp, C r H 1/1 and cp r H C 

we must show that cp rH 1/1. Let BJ, . .. ,Bn be a proof of C from cp, 

and let At. . .. ,Ak be a proof of 1/1 from cp U {C}. Then the following is 

a proof of 1/1 from cp: Bt. . .. ,Bn, C, At. . .. ,Ak. It is easy to verify that 

r H is closed under substitution. 

THEOREM 17. Let r be a Tarski system, then there exists a Hilbert 

system H such that r = rHo 
Proof. Let H be the Hilbert system (Ho, Ht. H 2) with Ho = 

{B 10 r B}, HI = 0, H2 = {cpll/l I cp r I/I}; clearly r C rHo We want to 

show that rH Cr· Assume cp rH 1/1. Let Bt. . .. ,Bn be a proof of 1/1 

from cpo We show by induction on i that cp r Bi. If Bi E cp this is clear. 

If Bi is obtained from some A I, ... ,Ak appearing previously in the 

sequence then by the induction hypothesis cp r Aj and also by the 

definition of H 2, At. ... ,Ak r Bi therefore by Lemma 10, cp r Bi. Now 

1/1 is obtained by clause (15c3ii) i.e. either 1/1 = {B} C cp, in which case 

cp r B or {B" . .. ,Bn}/I/I is a rule of H 2, i.e. B" . .. ,Bn r 1/1, so again 

cp r 1/1 by Lemma 10. 

DEFINITION 18. Let r be a Tarski consequence relation and let I~~ 

and I~t be the minimal and maximal Scott consequence relations that 

agree with r. Define Sf--' called the slash of r by: 

Sf-- = {cp Ifor all 1/1, cp I~t 1/1 implies cp I~~ I/I.} 

Remark. If 0 E Sf--' then r has the 'disjunction property' in a certain 

sense. We shall return to this notion later. 

2. SCOTT SEMANTICS 1 

DEFINITION 1. Let I~ be a Scott consequence relation. 

(a) By a theory we mean a pair (d, 9) of sets of wffs. 

(b) (d, 9) is said to be I~-consistent iff d I~ 9. 

(c) (d, 9) is said to be complete iff d U 9 is the set of all wffs. 

(d) (d', 9') is said to extend (d,9) iff d Cd', 9 C 9'. 

DEFINITION 2. (a) By a model we mean a function t assigning 

a value in {O, I} to each wff of L. 

(b) A semantics T is a set of models. 
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DEFINITION 3. Let T be a semantics. 

Define: 'P I~T t/I iff for all t E T the following holds: If for all A E 'P, 

teA) = 1, then for some BE t/I, t(B) = 1. 

LEMMA 4. I~T is a Scott consequence relation. 

Proof. Exercise. 

LEMMA 5. Let (d,0) be I~ consistent. Then there exists a I~ 

consistent and complete extension (d',0') of (d,0). 

Proof. Let A I> A 2, A 3, ••• be an enumeration of all the wffs of L. 

Define by induction a sequence (dn, 0 n ) of I~-consistent theories such 

that for all n, d C d n C d n+1> 0 ~ 0 n ~ 0 n+1• Let do = d, 0 0 = 0. Assume 

(dm 0 n) has been defined. Regard Am if d n, An I~ 0 n, let d n+1 = 
d n U {An}, 0 n+1 = 0 n. If d m An I~ 0 n, then d n Ilf 0 n, An, since otherwise 

we can get d n I~ en, contrary to the inductive hypotheses. So let 

d n+1 = d n, 0 n+1 = 0 n U {An}. Thus (dn +1> 0 n+1) is defined and is I~ 

consistent in either case. 

Now let d' = Un d n, e' = Un 0 n. 

It is easy to show that (d', 0') is the desired extension. 

DEFINITION 6. (a) Let (d, 0) be a I~ consistent and complete 

theory. Let t(~,e) be the model with t(~,0) (A) = 1 iff A Ed. 

(b) Let Tit be the semantics with 

Tit = {t(~, f» I (d, 0) Ir.- complete and consistent}. 

THEOREM 7. (Scott completeness theorem). Ir.- = lr.-iF· 

Proof. 'P Ir.- t/I iff (by Lemma 5) no Ir.- complete and consistent 

theory (d, 0) extends ('P, t/I) iff (by definition) 'P lr.-i1f- tjI. 

Exercise 8. Let Ir.- be Scott consequence relation, and let (d, 0) be a 

Ir.--consistent theory. Define Ir.-* by 'P Ir-* t/I iff d, 'P Ir.- 0, tjI. Show that 

I~* is a Scott consequence relation. 
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3. WHAT IS A CLASSICAL CONNECTIVE? 

DEFINITION 1. Let I~ be a consequence relation and let IE 22n. Let 

# be an n-place connective in the language of I~. 

Consider the following set of conditions (denoted by Rf ) on I~. 
For each a E {O, l}n take #a: 

#a: CPa I~ !/Ia 

Where cpa, !/Ia ~ {Ao, ... , An-t, #(Ao, ... ,An-I)} have the property 
that 

a(i) = 1 iff Ai E CPa 

a(i) = 0 iff Ai E !/Ia 

I(a) = 1 iff #(Ao, ... , An-I) E !/Ia 

I(a) = 0 iff #(Ao, ... , An-I) E CPa 

DEFINITION 2. Let I~ be a Scott consequence relation for a lan-
guage with the n-ary connective #. We say the # is classical in I~ 

with truth table I iff all the conditions of Rf hold for I~, for any Ai. 

When we turn to Tarski consequence relations r--, the problem of 
which connectives are classical is more difficult. One may give the 
following definition. 

DEFINITION 3. Let r-- be a Tarski consequence relation for a 
language with the connective #. We say that # is strongly classical in 
r-- with truth table I iff for every Scott consequence relation I~ agreeing 

with r-- we have that # is classical in I~ with truth table I. 

DEFINITION 4. Let r-- be a Tarski consequence relation for a 
language Land # be a connective of L. Then # is said to be weakly 

classical with truth table I iff there exists a Scott consequence 

relation I~ agreeing with r-- in which # is classical with truth table I. 

THEOREM 5. Let r-- be a consistent Tarski system in a language 

with the n-ary connective #. Then # is strongly classical in r-- iff 

either (a) 0 r-- # or (b) lor some BI> ... , Bk E {AI> ... ,An}, 

B), ... , Bk r-- #(A), ... , An) and #CAt, ... , An) r-- Bi, for each 1 ~ i ~ k, 

where A), ... , An are arbitrary atomic wffs. 
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Remark. Theorem 5 says that essentially only conjunctions can be 

strongly classical in ~. 

Proof. Since # is strongly classical in ~, it is classical in I~~, the 

minimal consequence relation agreeing with ~. Let f be a truth table, 

with regard to which # is classical in I~~. Let T ~ {1, ... , n}. Let aT 
be such that aT (j) = 1 iff JET. We proceed to show that the theorem 

holds. Let At. ... , An be atomic, and ask what is the value f(ae)? If 
the value is 1 then 01~~ A], ... , An, #(A h . .. , An), and since Ai are 

atomic and ~ consistent, we must have 0/- #(A" ... ,An), which is 

case (a) of the theorem. 

Otherwise, f(ae) = 0, and so #(AJ, . .. ,An) ~ AI> ... ,An and there-

fore for some j E {1, ... , n}, #(AJ, ... , An) f- A j • Regard a{j}, if f(am) = 
1, then Ai I~~ {A;/ i¢ j}, #(A h . .. , An) and again since Ai are atomic, 

Ai f- #(AJ, ... , An) and thus case (b) of the theorem holds. 

Otherwise, f(7i{j}) = 0 and so Ai' #(AJ, ... , A2~ I~~ {~i I ~¢ j}. Since 

#(At. ... , An) f- Ai> we get that #(At. ... , An) Ih- {Ai It ¢ J}. 
A~sume by induction on 1 ~ i ~ n, that there exists a T ~ {I, ... , 

n}, T = i with the property that either (1) For some Bjl , ••• , B jk jl, ... , 

ik E T case (b) of the theorem holds or (2) #(A I, ... , An) f- B j for 

each JET. _ 

We find such a T' with T' = i + 1. If case (1) holds, any element can 

be added to T to form T'. If case (2) holds, consider aT. If f( aT) = 1, 

then {Aj I JET} I~~ {Aj I jE T}, #(Ah ... , An) and since Ai are atomic 

{Aj Ii E T} r #(AJ, ... , An) which yields case (1) for T. If f(aT) = 0, 

we r~t {A j I JET}, #(At. ... , An) I~F {Aj I jE T}, let jo E T be such. that 

{Aj I JET}, #(At. ... , An) /- A.b. Smce #(AJ, ... , An) f- Aj for JET 

we get by Lemma 1.10 that #(A I, ..• , An) /- A io• This yields case (2) 

for T' = T U {jo}. 

Now consider the case of i = n. If the case (1) holds, then case (b) 

of the theorem is valid. If case (2) holds, then # ~ Ai, 1 ~ i ~ n. 

Consider iir for T = {I, ... , n}. If f(aT) = 1 we get that AJ, ... , 

An f- #(At. ... , An) which yields case (b) of the theorem. If f(aT) = 0, 

we get AI, ... , An, #(A I, ... , An) I~~ 0 and since #f- Ai, 1 ~ i ~ n, we 

get # I~~ 0 which is impossible by the definition of I~~. Thus theorem 
5 is proved. 

Exercise 6. Let I~ be a Scott consequence relation and let #(A J, ••• , 

An) be an n-ary connective. Show that # is classical in I~ with truth 

table f iff for all t E 1Jf-, t(#(AJ, ... , An) = f(t(AI)' ... , t(An». 
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Exercise 7. Let ~ be a Tarski consequence relation and I~~, I~~ be 

the maximal and minimal Scott consequence relations that agree with 

it. Show that: 

(a) If ~ is a Tarski system then I~~, I~~ are Scott systems. 

(b) If the connective # is weakly classical in ~ (with truth table f) 

then it is classical in I~~ (with truth table f). 

(c) If the connective # is strongly classical in ~ (with truth table f) 

then it is classical in I~~ (with truth table f). 

COROLLARY. If #j are weakly classical in ~, for 1 !S i !S n, then for 
some I~ that agrees with ~, #j, 1 !S i !S n are all classical in I~. 

Exercise 8. Let I~ be a Scott consequence relation in a language with 

some or all of the following connectives: 

t, f zero place 

one place 

/I., v,~ two place 

Show that these connectives have their respective classical table in 

I~ iff the following holds (respectively), for all A, B. 

(1) 01~ t 

(2) f I~ 0 

(3) A /I. B I~ A; A /I. B I~ B; A, B I~ A /I. B 

(4) A I~ A v B; B I~ A v B; A v B I~ A, B 

(5) A, ~ A I~ 0; 01~ A, ~ A 

(6) A, A ~ B I~ B; 01~ A, A ~ B. 

DEFINITION 9. Let I~ be a Scott consequence relation and let Q be 

a unary quantifier of the language. We say that Q is the classical 

universal quantifier in I~ iff the following always holds for all A, cp, 1/1. 

(a) (Qx)A(x) I~ A(y) 

(b) cp I~ A(x), 1/1 iff cp I~ (Qx)A(x), 1/1 

where x does not appear free in any wff cp U 1/1. 


