DOV M. GABBAY Professor of Logic, Bar-Ilan University

# SEMANTICAL INVESTIGATIONS IN HEYTING'S INTUITIONISTIC LOGIC



SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

### CHAPTER 1

# LOGICAL SYSTEMS AND SEMANTICS

This chapter discusses the notions of a logical system, a semantics for a logical system, and the notion of what is a classical connective in a logical system. Examples are given, to prepare the background for the introduction of the Heyting systems in the next chapter.

## 1. Scott and tarski systems

DEFINITION 1. Let L be a language, and let  $\varphi$ ,  $\psi$  denote finite, possibly empty sets of wffs. Let  $\emptyset$  denote the empty set. A binary relation  $\parallel$  on sets  $\varphi$ ,  $\psi$  is called *Scott consequence relation* iff the following conditions hold:

- (a)  $\varphi \parallel \varphi$ , for  $\varphi \neq \emptyset$
- (b) if  $\varphi \Vdash \psi$  then  $\varphi \cup \varphi' \Vdash \psi \cup \psi'$  for any  $\varphi', \psi'$ .
- (c) (Cut rule): if  $\varphi, A \models \psi$  and  $\varphi \models \psi, A$  then  $\varphi \models \psi$

DEFINITION 2. We write  $\varphi$ ,  $A \models \psi$ , B instead of  $\varphi \cup \{A\} \models \psi \cup \{B\}$ . Similarly, we use  $\varphi$ ,  $\varphi' \models \psi$ ,  $\psi'$  and  $\varphi$ ,  $A_1, \ldots, A_n \models \psi$ ,  $B_1, \ldots, B_k$ , instead of  $\varphi \cup \varphi' \models \psi \cup \psi'$  and  $\varphi \cup \{A_1, \ldots, A_n\} \models \psi \cup \{B_1, \ldots, B_k\}$  respectively.

DEFINITION 3. (a) A (Scott) consequence relation is said to be consistent iff  $\emptyset \parallel \!\!\! / \emptyset$ .

(b) A Scott consequence relation  $\parallel$  is said to be a *Scott system* (S.S) iff  $\parallel$  is closed under substitution.

DEFINITION 4. Let  $\Delta$ ,  $\Theta$  be sets of wffs, and let  $\parallel$  be a Scott consequence relation. We write  $\Delta \parallel \Theta$  iff for some  $\varphi \subseteq \Delta$ ,  $\psi \subseteq \Theta$ ,  $\varphi \parallel \psi$ .

LEMMA 6. For any Scott consequence relation  $\parallel$ , if  $\varphi$ ,  $A_i \parallel \psi$  for  $1 \le i \le n$  and  $\varphi \parallel \psi$ ,  $A_1, \ldots, A_n$  then  $\varphi \parallel \psi$ .

**Proof.** By induction on *n*. For n = 1 this is the cut rule. For n = k + 1, notice that  $\varphi$ ,  $A_i \models \psi$ ,  $A_{k+1}$  for  $1 \le i \le k$  and  $\varphi \models \psi$ ,  $A_{k+1}$ ,  $A_1, \ldots, A_k$  and so by the induction hypothesis  $\varphi \models \psi$ ,  $A_{k+1}$ . Now since  $\varphi$ ,  $A_{k+1} \models \psi$  we conclude  $\varphi \models \psi$ .

DEFINITION 7. A Tarski consequence relation (for L) is a binary relation containing pairs of the form  $(\varphi, \psi)$  (written  $\varphi \vdash \psi$ ) with  $\overline{\psi} = 1$ , satisfying the following properties. (We use the conventions of Definition 2 for  $\vdash$  as well.)

(a)  $A \vdash A$ 

(b) if  $\varphi \vdash \psi$  then  $\varphi, \varphi' \vdash \psi$ 

(c) if  $\varphi, C \vdash \psi$  and  $\varphi \vdash C$  then  $\varphi \vdash \psi$  (cut rule)

DEFINITION 8. (a) A Tarski consequence relation  $\vdash$  is called a *Tarski system* (T.S) iff  $\vdash$  is closed under substitution.

(b)  $\vdash$  is said to be consistent iff for some  $\varphi$ , A,  $\varphi \not\models A$ .

**Exercise 9.** Let  $\parallel$  be a Scott consequence relation. For  $\overline{\psi} = 1$  let  $\varphi \models \psi$  iff (def)  $\varphi \models \psi$ ; show that  $\vdash$  is a Tarski consequence relation.

LEMMA 10. If  $\varphi \models A_i$ ,  $1 \le i \le n$  and  $\varphi$ ,  $A_1, \ldots, A_n \models \psi$  then  $\varphi \models \psi$ . *Proof.* Let  $\varphi' \subseteq \{A_1, \ldots, A_n\}$  and let  $\overline{\varphi}' = n - k$ . We show by induction on k that  $\varphi \cup \varphi' \models \psi$ . The lemma will follow for the case n = k.

Case k = 1: Let  $\{A_1, \ldots, A_n\} = \varphi' \cup \{A\}$ .  $A \notin \varphi'$ . Then  $\varphi \cup \varphi' \models A$ and  $\varphi, \varphi', A \models \psi$  and therefore by the cut rule,  $\varphi, \varphi' \models \psi$ .

Case k: Let  $\varphi'' = \varphi' \cup \{A\}$ ,  $\overline{\varphi}'' = n - k$ , with  $A \notin \varphi'$ ,  $\varphi'' \subseteq \{A_1, \ldots, A_n\}$ .

By the induction hypothesis  $\varphi$ ,  $\varphi' \vdash \psi$  but also  $\varphi$ ,  $\varphi' \vdash A$  and therefore by the cut rule,  $\varphi$ ,  $\varphi' \vdash \psi$ . This proves Lemma 10.

THEOREM 11. Let  $\vdash$  be a Tarski consequence relation and let  $\parallel^{-}$  be defined by  $\varphi \parallel^{-} \psi$  iff (def) for some  $B \in \psi$ ,  $\varphi \vdash B$ , then  $\parallel^{-}$  is a Scott consequence relation.

*Proof.* Clearly conditions (a) and (b) of Definition 1 are satisfied. We verify the cut rule. Assume that  $\varphi$ ,  $C \models^- \psi$  and  $\varphi \models^- \psi$ , C. By definition, for some  $B \in \psi$  and  $A \in \psi \cup \{C\}$  we have that  $\varphi$ ,  $C \models B$  and  $\varphi \vdash A$ . If  $A \in \psi$  we are finished. If  $A \notin \psi$ , then A = C, and thus  $\varphi \vdash C$ , and  $\varphi$ ,  $C \vdash B$  and so  $\varphi \vdash B$  and again we are finished.

DEFINITION 12. Let  $\vdash$  be a Tarski consequence relation and let  $\parallel$  be a Scott consequence relation (for the same language L).  $\parallel$  and  $\vdash$  are said to agree iff for all  $\varphi$ ,  $\psi$ ,  $\overline{\psi} = 1$ ,  $\varphi \vdash \psi$  iff  $\varphi \parallel \psi$ .

THEOREM 13 (Scott). Let  $\vdash$  be a Tarski consequence relation, then there exist two Scott consequence relations  $\parallel\!\!\mid_{+}^{+}$  and  $\parallel\!\!\mid_{-}^{-}$  that agree with  $\vdash$  and such that for any  $\parallel\!\!\mid$  that agrees with  $\vdash$  we have  $\parallel\!\!\mid_{-}^{-}\subseteq \parallel\!\!\mid_{-}^{+}$ .

*Proof.* (a) For  $\Vdash_{\vdash}$  take the Scott consequence relation defined in Theorem 11. Assume that  $\Vdash$  is any Scott consequence relation that agrees with  $\vdash$ . Then if  $\varphi \Vdash_{\vdash} \psi$  then for some  $A \in \psi$ ,  $\varphi \vdash A$  and therefore  $\varphi \Vdash A$  and hence  $\varphi \Vdash \psi$ .

(b) We define  $|\!|_{+}^+$ .

Let  $\varphi \Vdash_{\vdash}^{+}$  iff for some finite set  $\Delta$ , property (\*) below holds, Where:

(\*) For any partition  $(\Delta_1, \Delta_2)$  of  $\Delta$  (i.e.  $\Delta_1 \cup \Delta_2 = \Delta$ ,  $\Delta_1 \cap \Delta_2 = \emptyset$ ) there exists a Scott consequence relation ||- that agrees with |- such that  $\varphi, \Delta_1 || - \psi, \Delta_2$ .

First we show that  $\parallel \vdash_{\vdash}^{+}$  is a consequence relation

(a) Clearly if  $\varphi \neq \emptyset$  then  $\varphi \Vdash_{\vdash}^{+} \varphi$  take  $\Delta = \emptyset$ 

(b) If  $\varphi \Vdash^+_{\vdash} \psi$  let  $\Delta$  be such that (\*) holds, then for any  $\varphi', \psi', \varphi \cup \varphi' \Vdash^+_{\vdash} \psi \cup \psi'$  as the same  $\Delta$  is adequate.

(c) Assume  $\varphi$ ,  $A \Vdash_{\vdash}^{+} \psi$  and  $\varphi \Vdash_{\vdash}^{+} \psi$ , A. Let  $\Delta$ ,  $\Delta^{*}$  resp. be the two sets having the properties (\*) in the definition of  $\Vdash_{\vdash}^{+}$ . Regard  $\Delta' = \Delta \cup \Delta^{*} \cup \{A\}$ , we claim  $\varphi \Vdash_{\vdash}^{+} \psi$  since  $\Delta'$  has the property (\*) required in the definition.

We now have to show that  $|\!|_{+}^+$  agrees with  $\mid\!|_{-}^+ A$  we want to show that  $\varphi \mid\!|_{-}^+ A$ . Since  $\varphi \mid\!|_{+}^+ A$ , there exists a  $\Delta$  with property (\*). We show by induction on *n*, that for any  $\Theta \subseteq \Delta$ ,  $\overline{\Theta} = n$  we have that  $\varphi \cup (\Delta - \Theta) \mid\!|_{-} A$ . For n = 1, let  $B \in \Theta$ , be arbitrary. So  $\varphi \cup (\Delta - \{B\}) \mid\!|_{-1} A$ , B for some  $\mid\!|_{-1}$ , that agrees with  $\mid\!|_{-}$ , because property (\*) holds. Also for some  $\mid\!|_{-2}$  that agrees with  $\mid\!|_{-}, \varphi, \Delta \mid\!|_{-2} A$ . Since  $\mid\!|_{-1}, \mid\!|_{-2}$  agree with  $\mid\!|_{-}$  we get that  $\varphi, \Delta \mid\!|_{-1} A$  and so by cut,  $\varphi \cup (\Delta - \{B\}) \mid\!|_{-1} A$  and so  $\varphi \cup (\Delta - \{B\}) \mid\!|_{-1} A$ .

Now assume that for any  $\Theta$ ,  $\overline{\Theta} \le m$ ,  $\varphi \cup (\Delta - \Theta) \vdash A$ , show this for any  $\Theta$ ,  $\overline{\Theta} = m + 1$ . Let such  $\Theta$  be given then for any  $B \in \Theta$ ,  $\varphi \cup$ 

 $(\Delta - \Theta), B \models A$ . Also by property (\*), there exists a  $\models$  that agrees with  $\models$  such that  $\varphi, \Delta - \Theta \models \Theta, A$ . Now since  $\models$  agrees with  $\models$  we get by Lemma 6 that  $\varphi, \Delta - \Theta \models A$ , and therefore  $\varphi, \Delta - \Theta \models A$ . This completes the induction step. If we take  $\Theta = \Delta$ , we get that  $\varphi \models A$ , and thus we see that  $\models_{+}^{+}$  agrees with  $\models$ .

To show that if  $\parallel$  agrees with  $\vdash$  then  $\parallel \subseteq \parallel_{\vdash}^+$ , assume that  $\varphi \parallel \psi$ , then for  $\Delta$  empty we get property (\*) and so  $\varphi \parallel_{\vdash}^+ \psi$ .

**Exercise 14.** Let  $\vdash$  be a Tarski consequence relation and let  $\parallel \downarrow^+_{\vdash}$  be the maximal Scott consequence relation agreeing with  $\vdash$ . Let  $con(\Delta)$  be  $con(\Delta) = \{A \mid \text{for some } \varphi \subseteq \Delta, \varphi \vdash A\}$ . Show that:

$$\varphi \Vdash_{\vdash}^{+} \psi \quad \text{iff} \quad \bigcap_{B \in \psi} con(\varphi' \cup \{B\}) \subseteq con(\varphi')$$

for all  $\varphi' \supseteq \varphi$ .

DEFINITION 15. (a) A Hilbert (or axiomatic) system H is a triple  $(H_0, H_1, H_2)$  where  $H_0$  is a set of wffs called axioms,  $H_1$  is a set of rules of the form  $A_1, \ldots, A_n/B$ , called provability rules and  $H_2$  is a set of rules of the form  $\varphi/\psi$ , with  $\overline{\psi} = 1$ , called consequence rules.

(b) Given a Hilbert system H, we define the relation  $\vdash_H A$ , on wff A as follows:  $\vdash_H A$  iff there exists a finite sequence of wff  $B_1, \ldots, B_k = A$  such that each  $B_i$  of the sequence is either a substitution instance of a member of  $H_0$  or for some wffs  $A_1, \ldots, A_n$ , appearing earlier than  $B_i$  in the sequence, we have that  $A_1, \ldots, A_n/B_i$  is a rule of  $H_1$ .

(c) Given a Hilbert system H we define the notion  $\varphi \vdash_H \psi$ , for  $\bar{\psi} = 1$  as follows:  $\varphi \vdash_H \psi$  iff there exists a sequence of wff  $B_1, \ldots, B_n$  such that (i) and (ii) below hold:

(i) For each  $i \le n$  either (1)  $B_i \in \varphi$  or (2)  $\vdash_H B_i$  ( $\vdash_H$  of (b) above) or

(3). For some  $A_1, \ldots, A_k$  appearing earlier in the sequence  $\{A_1, \ldots, A_k\}/\{B_i\}$  is a substitution instance of a rule of  $H_2$ .

(ii) Either (1)  $\psi = \{B\}$  with  $B \in \varphi$  or (2)  $\{B_1, \ldots, B_n\}/\psi$  is a substitution

instance of a rule of  $H_2$ .

*Remark.* We use the abbreviations of Definition 2 for Hilbert systems as well.

THEOREM 16. Let H be a Hilbert system, then  $\vdash_H$  is a Tarski system.

#### CHAPTER 1

*Proof.* Let us check the cut rule. Assume  $\varphi$ ,  $C \vdash_H \psi$  and  $\varphi \vdash_H C$  we must show that  $\varphi \vdash_H \psi$ . Let  $B_1, \ldots, B_n$  be a proof of C from  $\varphi$ , and let  $A_1, \ldots, A_k$  be a proof of  $\psi$  from  $\varphi \cup \{C\}$ . Then the following is a proof of  $\psi$  from  $\varphi: B_1, \ldots, B_n, C, A_1, \ldots, A_k$ . It is easy to verify that  $\vdash_H$  is closed under substitution.

THEOREM 17. Let  $\vdash$  be a Tarski system, then there exists a Hilbert system H such that  $\vdash = \vdash_{H}$ .

**Proof.** Let H be the Hilbert system  $(H_0, H_1, H_2)$  with  $H_0 = \{B | \emptyset | B\}$ ,  $H_1 = \emptyset$ ,  $H_2 = \{\varphi / \psi | \varphi | - \psi\}$ ; clearly  $| - \subseteq | -_H$ . We want to show that  $| -_H \subseteq | -$ . Assume  $\varphi | -_H \psi$ . Let  $B_1, \ldots, B_n$  be a proof of  $\psi$  from  $\varphi$ . We show by induction on *i* that  $\varphi | - B_i$ . If  $B_i \in \varphi$  this is clear. If  $B_i$  is obtained from some  $A_1, \ldots, A_k$  appearing previously in the sequence then by the induction hypothesis  $\varphi | - A_j$  and also by the definition of  $H_2, A_1, \ldots, A_k | - B_i$  therefore by Lemma 10,  $\varphi | - B_i$ . Now  $\psi$  is obtained by clause (15c3ii) i.e. either  $\psi = \{B\} \subseteq \varphi$ , in which case  $\varphi | - B$  or  $\{B_1, \ldots, B_n\}/\psi$  is a rule of  $H_2$ , i.e.  $B_1, \ldots, B_n | - \psi$ , so again  $\varphi | - \psi$  by Lemma 10.

DEFINITION 18. Let  $\vdash$  be a Tarski consequence relation and let  $\parallel_{\vdash}$ and  $\parallel_{\vdash}^+$  be the minimal and maximal Scott consequence relations that agree with  $\vdash$ . Define  $S_{\vdash}$ , called *the slash* of  $\vdash$  by:

$$S_{\vdash} = \{ \varphi \mid \text{for all } \psi, \quad \varphi \mid \vdash_{\vdash}^{+} \psi \text{ implies } \varphi \mid \vdash_{\vdash}^{-} \psi. \}$$

*Remark.* If  $\emptyset \in S_{\vdash}$ , then  $\vdash$  has the 'disjunction property' in a certain sense. We shall return to this notion later.

# 2. Scott semantics 1

DEFINITION 1. Let ⊩ be a Scott consequence relation.

- (a) By a theory we mean a pair  $(\Delta, \Theta)$  of sets of wffs.
- (b)  $(\Delta, \Theta)$  is said to be  $\parallel$ -consistent iff  $\Delta \parallel \Theta$ .
- (c)  $(\Delta, \Theta)$  is said to be *complete* iff  $\Delta \cup \Theta$  is the set of all wffs.
- (d)  $(\Delta', \Theta')$  is said to extend  $(\Delta, \Theta)$  iff  $\Delta \subseteq \Delta', \Theta \subseteq \Theta'$ .

DEFINITION 2. (a) By a *model* we mean a function t assigning a value in  $\{0, 1\}$  to each wff of L.

(b) A semantics T is a set of models.

DEFINITION 3. Let T be a semantics.

Define:  $\varphi \Vdash_T \psi$  iff for all  $\mathbf{t} \in \mathbf{T}$  the following holds: If for all  $A \in \varphi$ ,  $\mathbf{t}(A) = 1$ , then for some  $B \in \psi$ ,  $\mathbf{t}(B) = 1$ .

LEMMA 4.  $\parallel_{T}$  is a Scott consequence relation. Proof. Exercise.

LEMMA 5. Let  $(\Delta, \Theta)$  be  $\parallel$  consistent. Then there exists a  $\parallel$  consistent and complete extension  $(\Delta', \Theta')$  of  $(\Delta, \Theta)$ .

*Proof.* Let  $A_1, A_2, A_3, \ldots$  be an enumeration of all the wffs of L. Define by induction a sequence  $(\Delta_n, \Theta_n)$  of  $\parallel$ -consistent theories such that for all  $n, \Delta \subseteq \Delta_n \subseteq \Delta_{n+1}, \Theta \subseteq \Theta_n \subseteq \Theta_{n+1}$ . Let  $\Delta_0 = \Delta, \Theta_0 = \Theta$ . Assume  $(\Delta_n, \Theta_n)$  has been defined. Regard  $A_n$ , if  $\Delta_n, A_n \parallel \Theta_n$ , let  $\Delta_{n+1} = \Delta_n \cup \{A_n\}, \Theta_{n+1} = \Theta_n$ . If  $\Delta_n, A_n \parallel \Theta_n$ , then  $\Delta_n \parallel \Theta_n, A_n$ , since otherwise we can get  $\Delta_n \parallel \Theta_n$ , contrary to the inductive hypotheses. So let  $\Delta_{n+1} = \Delta_n, \Theta_{n+1} = \Theta_n \cup \{A_n\}$ . Thus  $(\Delta_{n+1}, \Theta_{n+1})$  is defined and is  $\parallel$ -consistent in either case.

Now let  $\Delta' = \bigcup_n \Delta_n$ ,  $\Theta' = \bigcup_n \Theta_n$ . It is easy to show that  $(\Delta', \Theta')$  is the desired extension.

DEFINITION 6. (a) Let  $(\Delta, \Theta)$  be a  $\parallel$  consistent and complete theory. Let  $\mathbf{t}_{(\Delta,\Theta)}$  be the model with  $\mathbf{t}_{(\Delta,\Theta)}(A) = 1$  iff  $A \in \Delta$ . (b) Let  $\mathbf{T}_{\parallel}^*$  be the semantics with

 $\mathbf{T}_{\mathbb{H}}^{*} = \{\mathbf{t}_{(\Delta, \Theta)} \mid (\Delta, \Theta) \Vdash \text{ complete and consistent} \}.$ 

THEOREM 7. (Scott completeness theorem).  $\parallel = \parallel_{T_{\parallel}}^{*}$ .

**Proof.**  $\varphi \Vdash \psi$  iff (by Lemma 5) no  $\Vdash$  complete and consistent theory  $(\Delta, \Theta)$  extends  $(\varphi, \psi)$  iff (by definition)  $\varphi \Vdash_{T_{\mathbb{H}}}^{*} \psi$ .

**Exercise 8.** Let  $\Vdash$  be Scott consequence relation, and let  $(\Delta, \Theta)$  be a  $\Downarrow$ -consistent theory. Define  $\Vdash^*$  by  $\varphi \Vdash^* \psi$  iff  $\Delta, \varphi \Vdash \Theta, \psi$ . Show that  $\Vdash^*$  is a Scott consequence relation.

#### CHAPTER 1

# 3. WHAT IS A CLASSICAL CONNECTIVE?

DEFINITION 1. Let  $\Vdash$  be a consequence relation and let  $f \in 2^{2^n}$ . Let # be an *n*-place connective in the language of  $\parallel$ .

Consider the following set of conditions (denoted by  $R_f$ ) on  $\parallel$ . For each  $\bar{a} \in \{0, 1\}^n$  take  $\#\bar{a}$ :

$$\#\bar{a}: \varphi_{\bar{a}} \Vdash \psi_{\bar{a}}$$

Where  $\varphi_{\bar{a}}, \psi_{\bar{a}} \subseteq \{A_0, \dots, A_{n-1}, \#(A_0, \dots, A_{n-1})\}$  have the property that

| $\bar{a}(i) = 1$ | 1ff | $A_i \in arphi_{ar{a}}$                       |
|------------------|-----|-----------------------------------------------|
| $\bar{a}(i) = 0$ | iff | $A_i \in \psi_{ar{a}}$                        |
| $f(\bar{a}) = 1$ | iff | $\#(A_0,\ldots,A_{n-1})\in\psi_{\bar{a}}$     |
| $f(\bar{a})=0$   | iff | $\#(A_0,\ldots,A_{n-1})\in \varphi_{\bar{a}}$ |

DEFINITION 2. Let  $\parallel$  be a Scott consequence relation for a language with the *n*-ary connective #. We say the # is classical in  $\parallel$ with truth table f iff all the conditions of  $R_f$  hold for  $\parallel$ , for any  $A_i$ .

When we turn to Tarski consequence relations  $\vdash$ , the problem of which connectives are classical is more difficult. One may give the following definition.

DEFINITION 3. Let  $\vdash$  be a Tarski consequence relation for a language with the connective #. We say that # is strongly classical in  $\vdash$  with truth table f iff for every Scott consequence relation  $\parallel$  agreeing with  $\vdash$  we have that # is classical in  $\parallel$  with truth table f.

DEFINITION 4. Let  $\vdash$  be a Tarski consequence relation for a language L and # be a connective of L. Then # is said to be weakly classical with truth table f iff there exists a Scott consequence relation  $\parallel$  agreeing with  $\vdash$  in which # is classical with truth table f.

THEOREM 5. Let  $\vdash$  be a consistent Tarski system in a language with the n-ary connective #. Then # is strongly classical in  $\vdash$  iff either (a)  $\emptyset \vdash \#$  or (b) for some  $B_1, \ldots, B_k \in \{A_1, \ldots, A_n\}$ ,  $B_1, \ldots, B_k \vdash \#(A_1, \ldots, A_n)$  and  $\#(A_1, \ldots, A_n) \vdash B_i$ , for each  $1 \le i \le k$ , where  $A_1, \ldots, A_n$  are arbitrary atomic wffs. *Remark.* Theorem 5 says that essentially only conjunctions can be strongly classical in  $\vdash$ .

*Proof.* Since # is strongly classical in  $\vdash$ , it is classical in  $\parallel \vdash_{\vdash}$ , the minimal consequence relation agreeing with  $\vdash$ . Let f be a truth table, with regard to which # is classical in  $\parallel \vdash_{\vdash}$ . Let  $T \subseteq \{1, \ldots, n\}$ . Let  $\bar{a}_T$  be such that  $\bar{a}_T(j) = 1$  iff  $j \in T$ . We proceed to show that the theorem holds. Let  $A_1, \ldots, A_n$  be atomic, and ask what is the value  $f(\bar{a}_{\emptyset})$ ? If the value is 1 then  $\emptyset \parallel \vdash_{\vdash} A_1, \ldots, A_n$ ,  $\#(A_1, \ldots, A_n)$ , and since  $A_i$  are atomic and  $\vdash$  consistent, we must have  $\emptyset \vdash \#(A_1, \ldots, A_n)$ , which is case (a) of the theorem.

Otherwise,  $f(\bar{a}_{\emptyset}) = 0$ , and so  $\#(A_1, \ldots, A_n) \models A_1, \ldots, A_n$  and therefore for some  $j \in \{1, \ldots, n\}, \#(A_1, \ldots, A_n) \models A_j$ . Regard  $\bar{a}_{\{j\}}$ , if  $f(\bar{a}_{\{j\}}) =$ 1, then  $A_j \models_{\vdash} \{A_i \mid i \neq j\}, \#(A_1, \ldots, A_n)$  and again since  $A_i$  are atomic,  $A_i \models \#(A_1, \ldots, A_n)$  and thus case (b) of the theorem holds.

Otherwise,  $f(\overline{a}_{\{j\}}) = 0$  and so  $A_j$ ,  $\#(A_1, \ldots, A_2) \Vdash_{\vdash} \{A_i \mid i \neq j\}$ . Since  $\#(A_1, \ldots, A_n) \vdash A_j$ , we get that  $\#(A_1, \ldots, A_n) \Vdash_{\vdash} \{A_i \mid i \neq j\}$ .

Assume by induction on  $1 \le i \le n$ , that there exists a  $T \subseteq \{1, \ldots, n\}$ ,  $\overline{T} = i$  with the property that either (1) For some  $B_{j_1}, \ldots, B_{j_k}, j_1, \ldots, j_k \in T$  case (b) of the theorem holds or (2)  $\#(A_1, \ldots, A_n) \models B_j$  for each  $j \in T$ .

We find such a T' with  $\overline{T}' = i + 1$ . If case (1) holds, any element can be added to T to form T'. If case (2) holds, consider  $\overline{a}_T$ . If  $f(\overline{a}_T) = 1$ , then  $\{A_j \mid j \in T\} \Vdash_{\overline{\vdash}} \{A_j \mid j \notin T\}$ ,  $\#(A_1, \ldots, A_n)$  and since  $A_i$  are atomic  $\{A_j \mid j \in T\} \vdash_{\overline{\vdash}} \#(A_1, \ldots, A_n)$  which yields case (1) for T. If  $f(\overline{a}_T) = 0$ , we get  $\{A_j \mid j \in T\}$ ,  $\#(A_1, \ldots, A_n) \Vdash_{\overline{\vdash}} \{A_j \mid j \notin T\}$ , let  $j_0 \notin T$  be such that  $\{A_j \mid j \in T\}$ ,  $\#(A_1, \ldots, A_n) \vdash_{\overline{\vdash}} A_{i_0}$ . Since  $\#(A_1, \ldots, A_n) \vdash_{A_j}$  for  $j \in T$ we get by Lemma 1.10 that  $\#(A_1, \ldots, A_n) \vdash_{A_{i_0}}$ . This yields case (2) for  $T' = T \cup \{j_0\}$ .

Now consider the case of i = n. If the case (1) holds, then case (b) of the theorem is valid. If case (2) holds, then  $\# \models A_i$ ,  $1 \le i \le n$ . Consider  $\bar{a}_T$  for  $T = \{1, \ldots, n\}$ . If  $f(a_T) = 1$  we get that  $A_1, \ldots, A_n \models \#(A_1, \ldots, A_n)$  which yields case (b) of the theorem. If  $f(a_T) = 0$ , we get  $A_1, \ldots, A_n, \#(A_1, \ldots, A_n) \models_{\vdash} \emptyset$  and since  $\# \models A_i$ ,  $1 \le i \le n$ , we get  $\# \models_{\vdash} \emptyset$  which is impossible by the definition of  $\models_{\vdash}$ . Thus theorem 5 is proved.

**Exercise 6.** Let  $\Vdash$  be a Scott consequence relation and let  $\#(A_1, \ldots, A_n)$  be an *n*-ary connective. Show that # is classical in  $\Vdash$  with truth table *f* iff for all  $\mathbf{t} \in T_{\Vdash}$ ,  $\mathbf{t}(\#(A_1, \ldots, A_n) = f(\mathbf{t}(A_1), \ldots, \mathbf{t}(A_n))$ .

**Exercise 7.** Let  $\vdash$  be a Tarski consequence relation and  $\Vdash_{\vdash}^-$ ,  $\Vdash_{\vdash}^+$  be the maximal and minimal Scott consequence relations that agree with it. Show that:

(a) If  $\vdash$  is a Tarski system then  $\parallel -\mu_{\downarrow}$ ,  $\parallel -\mu_{\downarrow}$  are Scott systems.

(b) If the connective # is weakly classical in  $\vdash$  (with truth table f) then it is classical in  $\parallel \stackrel{+}{\vdash}$  (with truth table f).

(c) If the connective # is strongly classical in  $\vdash$  (with truth table f) then it is classical in  $\parallel_{\bar{\vdash}}$  (with truth table f).

COROLLARY. If  $\#_i$  are weakly classical in  $\vdash$ , for  $1 \le i \le n$ , then for some  $\parallel$  that agrees with  $\vdash$ ,  $\#_i$ ,  $1 \le i \le n$  are all classical in  $\parallel$ .

**Exercise 8.** Let  $\parallel$  be a Scott consequence relation in a language with some or all of the following connectives:

| <i>t</i> , <i>f</i>                 | zero place |
|-------------------------------------|------------|
| ~                                   | one place  |
| $\wedge \;,\; \vee \;, \rightarrow$ | two place  |

Show that these connectives have their respective classical table in  $\parallel$  iff the following holds (respectively), for all A, B.

- (1)  $\emptyset \parallel t$
- (2)  $f \parallel \emptyset$
- $(3) \qquad A \wedge B \Vdash A; \quad A \wedge B \Vdash B; \quad A, B \Vdash A \wedge B$
- (4)  $A \parallel A \lor B; B \parallel A \lor B; A \lor B \parallel A, B$
- (5)  $A, \sim A \models \emptyset; \quad \emptyset \models A, \sim A$
- (6)  $A, A \rightarrow B \Vdash B; \quad \emptyset \Vdash A, A \rightarrow B.$

DEFINITION 9. Let  $\parallel$  be a Scott consequence relation and let Q be a unary quantifier of the language. We say that Q is the classical universal quantifier in  $\parallel$  iff the following always holds for all A,  $\varphi$ ,  $\psi$ .

- (a)  $(Qx)A(x) \models A(y)$
- (b)  $\varphi \models A(x), \psi$  iff  $\varphi \models (Qx)A(x), \psi$

where x does not appear free in any wff  $\varphi \cup \psi$ .

14