Kalküle Natürlichen Schließens

wird besprochen: Freitag, 31.05.19

Aufgaben:

- Beweisen Sie im Gentzen-Kalkül Natürlichen Schließens NJ für die intuitionistische Aussagenlogik!¹
 - a) $\sim (p \cap \sim p)$
 - b) $(p \supset \sim q) \supset (\sim \sim q \supset \sim p)$
- 2. Beweisen Sie

 $\text{das Ausdrucksschema} \quad ((A \to B) \to A) \leftrightarrow A \quad \text{und die Regel} \quad \frac{\neg (H_1 \to H_2)}{H_1 \to \neg H_2}$

- a) im Annahmesystem aus dem Kurs "Klassische Logik"
- b) im System Natürlichen Schließens von Lemmon²
- 3. Sei die Sprache $\mathcal L$ der klassischen Aussagenlogik so modifiziert, dass sie $\wedge, \vee, \rightarrow$ und \bot als Junktorbasis enthalte; zudem sei die Negation \neg wie üblich definiert, also $\neg H =_{Def} H \rightarrow \bot$.

Formulieren Sie die geeignete Regeln für ein System natürlichen Schließens, basierend auf der modifizierten Sprache, also Regeln für \perp und Abschlußbedingungen für den indirekten Beweis.

- 4. Beweisen Sie im Hilbertkalkül (a. d. VL Klassische Logik) $A \to (B \to C), \ B \vdash A \to C$ und schreiben Sie diese Ableitung
 - a) in herkömmlicher (linearer) Darstellung
 - b) in Baumform

¹vgl. handout 3a

²vgl. handout 3