3. Positive, Minimale und Intuitionistische Aussagenlogik

Abgabetermin: Dienstag, 16.04.19

Axiome:

A1.
$$A \rightarrow (B \rightarrow A)$$

A2.
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

A3.
$$A \wedge B \rightarrow A$$

A4.
$$A \wedge B \rightarrow B$$

A5.
$$A \rightarrow (B \rightarrow (A \land B))$$

A6.
$$A \rightarrow A \lor B$$

A7.
$$B \rightarrow A \lor B$$

A8.
$$(A \to C) \to ((B \to C) \to (A \lor B \to C))$$

M1.
$$(A \to B) \to (\neg B \to \neg A)$$

M2.
$$\neg (A \land \neg A)$$

IL.
$$\neg A \rightarrow (A \rightarrow B)$$

Beweis- und Ableitungsregel: MP. $\frac{A,\ A \to B}{B}$

Kalküle: Positive (ppL): A1. - A8., MP; Minimale (ML): ppl ⊕ M1. - M2.; IAL: ML ⊕ IL.

- 1. Beweisen Sie in ppL:
 - a) $\vdash A \rightarrow A$

b)
$$B \to C \vdash (A \to B) \to (A \to C)$$

c)
$$C \to A$$
, $C \to B \vdash C \to A \land B$

- 2. Man ergänze die Sprache von ppL um die Aussagenkonstante (den nullstelligen Junktor) \bot und definiere (\star) $\neg H \equiv_{def.} H \to \bot$. Zeigen Sie, dass in dem so definierten Kalkül M1. und M2. beweisbar sind!
- 3. Beweisen Sie in ML:

a)
$$(H \to p \land \neg p) \to \neg H$$

b)
$$\vdash (A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$$

c)
$$\vdash A \rightarrow \neg \neg A$$

- 4. Skizzieren Sie eine Begründung für die Behauptung
 - $(\star) \nvdash_{ML} p \land \neg p \rightarrow q$

Hier dürfen Sie darauf aufbauen, dass IAL eine echte Kalkülerweiterung von ML ist, speziell darauf, dass das Axiomenschema IL nicht in ML beweisbar ist.